

THE CRYSTAL STRUCTURE OF PICOLINIC ACID

Fusao TAKUSAGAWA and Akira SHIMADA

Faculty of Science, Osaka City University, Sumiyoshi-ku, Osaka 558

The crystal structure of picolinic acid was determined by a three-dimensional X-ray analysis. The molecules are linked by two symmetric double minimum hydrogen bonds with a small potential barrier, N—H—N and O—H—O, and form a zig-zag chain.

As a part of a series of studies on the hydrogen bonding of pyridine-carboxylic acids, the crystal structure analysis of picolinic acid was undertaken.

The crystals were obtained by recrystallization from a benzene solution. They were twins with the bc twinning plane. The crystal data are: $C_6H_5NO_2$, M.W. = 123.11; monoclinic, $a = 21.267(2)$, $b = 3.831(1)$, $c = 13.970(1) \text{ \AA}$, $\beta = 108.01(1)$, $V = 1082.5(2) \text{ \AA}^3$; $Z = 8$, $D_x = 1.511$, $D_m = 1.49 \text{ g/cm}^3$; space group $C2/c$.¹⁾ Intensity data were collected by means of equi-inclination integrating Weissenberg technique using $CuK\alpha$ radiation. Intensity measurement of 1193 independent reflections was made visually. No corrections were made for absorption and extinction.

The structure was solved by the inspection of a sharpened Patterson map. All hydrogen atoms were found from a difference Fourier map. Block-diagonal least-squares refinements with anisotropic temperature factors for non-hydrogen atoms and with isotropic temperature factors for hydrogen atoms were carried out and the conventional R value was reduced to 5.75% for all observed reflections.

From a difference Fourier map and least-squares refinements, the molecule takes the intermediate form between the neutral molecule and zwitter ion. A hydrogen atom capable of dissociation is linked to both of the N(1) and O(1) atoms with an occupancy factor of one-half. Bond lengths and angles are given in Fig. 1. Standard deviations in the bond lengths and angles between non-hydrogen atoms are 0.003 \AA and 0.2° , respectively. Standard deviations in those involving hydrogen atoms are about 0.03 \AA in bond lengths and about 2° in bond angles. The C-C bond lengths in pyridine ring are close to the values found in pyridine,²⁾ except for the C(4)-C(5) bond length. Two C-N bond lengths are equal to each other within the limits of experimental error. In the carboxyl group, the difference between the two C-O bond lengths is 0.071 \AA . The dihedral angle between the planes of a pyridine ring and a carboxyl group is 4.8° . The C-N-C bond angle in a pyridine ring is 119.9° . This value is intermediate between that of pyridine not protonated at the nitrogen atom and that of some pyridine derivatives³⁻⁵⁾ protonated. This fact is supported by existence of the N—H—N hydrogen bond.

Figure 2 shows the molecular arrangement viewed along the b axis. The hydrogen bonding system of this compound has already been studied by Paris et al.⁶⁾ using infrared spectroscopy. They predicated an intramolecular hydrogen bond as pictured on the next page. Such an O-H...N intramolecular hydrogen bond is not found, but the

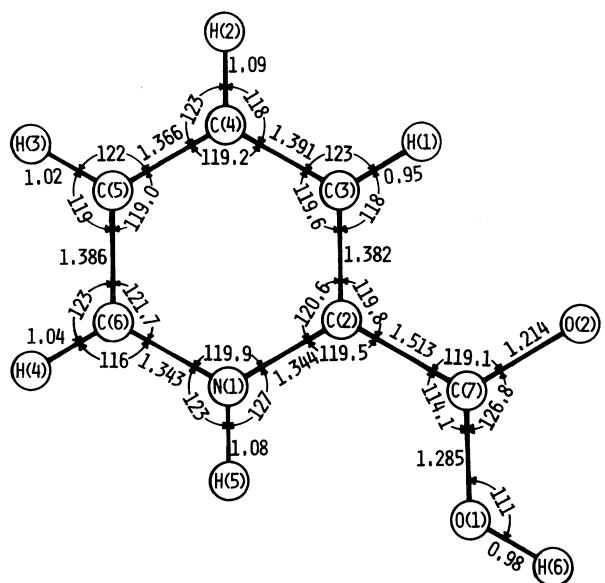
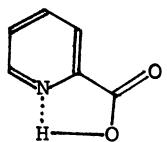
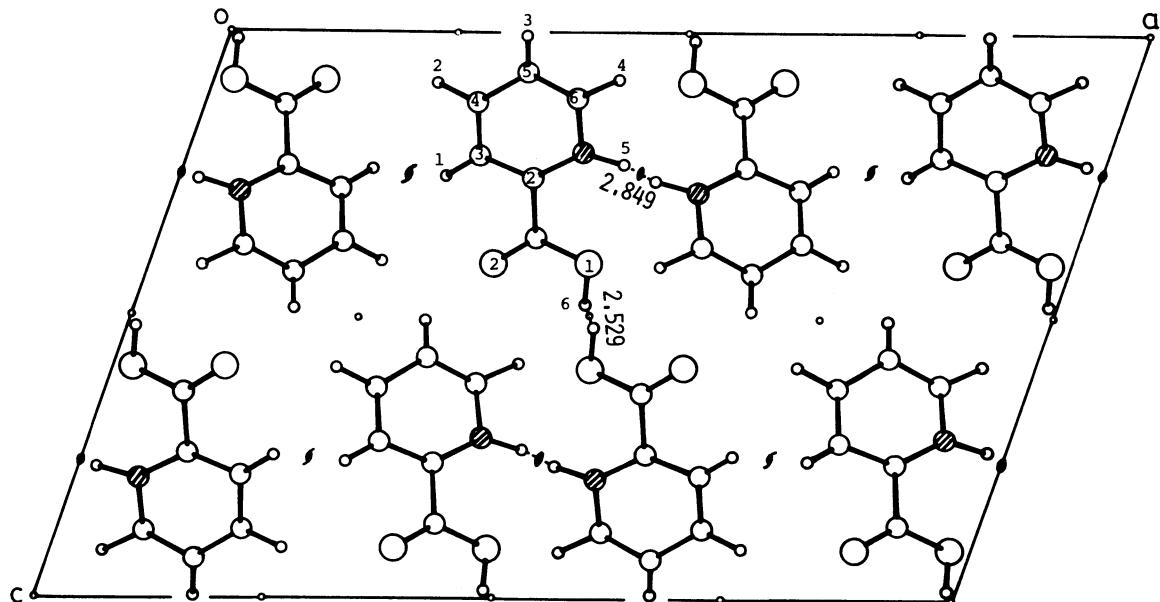




Fig. 1. Bond lengths and angles.

two symmetric double minimum hydrogen bonds with a small potential barrier, the N—H—N (involving the two-fold axis) and the O—H—O (involving the center of symmetry), join the molecules, forming the zig-zag chain along the c axis. These chains are packed together only by van der Waals forces. It is reasonable that the twinning occurred on the (1 0 0) plane at $x = \frac{1}{4}$ or $\frac{3}{4}$.

Fig. 2. The crystal structure viewed along the b axis.

REFERENCES

- 1) Successful solution of the structure led to final assignment of C2/c, as the appropriate space group.
- 2) B. Bak, L. H. Nygaard and J. R. Andersen, *J. Mol. Spectrosc.*, **2**, 361 (1958).
- 3) P. C. Rerat, *Acta Crystallogr.*, **15**, 427 (1962).
- 4) B. R. Penfold, *Acta Crystallogr.*, **6**, 591 (1953).
- 5) F. Takusagawa, K. Hirotsu and A. Shimada, *Bull. Chem. Soc. Japan*, **46**, 2372 (1973).
- 6) M. Paris, G. Thomas and J. C. Merlin, *Bull. Soc. Chim. France*, **1961**, 707.

(Received July 12, 1973)